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Abstract: With rapid urbanization and energy consumption, environmental pollution and degradation have become 
increasingly serious problems in China. At the beginning of 2013, China implemented new ambient air quality 
standards (GB 3095-2012) in which the concentration of six pollutants including PM2.5, ozone, carbon monoxide, 
PM10, sulfur dioxide and nitrogen dioxide were monitored. This study gathered annual air pollutant concentration 
data for the six pollutants in 113 key environmental protection cites throughout China in 2014 and 2015 to explain 
spatial patterns of urban air pollution. Based on the Kernel density estimation method, spatial hotspots of air pollu-
tion were illustrated through which spatial cluster of each pollutants could be plotted. By employing an entropy 
evaluation system, urban air quality was assessed in terms of the six atmospheric pollutants. We conclude that, in 
general, CO and SO2 were two important pollutants in most Chinese cities, but this varied greatly among cities. The 
assessment results indicate that cities with the worst air quality were mainly located in northern and central prov-
inces, dominantly in the Beijing-Tianjin-Hebei metropolitan area. Regression modeling showed that a combination 
of meteorological factors and human-related determinants, to say specifically, industrialization and urbanization 
factors, greatly influenced urban air quality variation in China. Results from spatial lag regression modeling con-
firmed that air pollution existed obvious spatial spillover effects among key cities. The spatial interdependence ef-
fects of urban air quality means that Chinese municipal governments should strengthen regional cooperation and 
deepen bilateral collaboration in terms of air regulation and pollution prevention. 
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1  Introduction 

It is well acknowledged that the economic reforms and 
opening up process in China since 1978 has greatly pro-
moted the accumulating growth of urban areas and eco-
nomic development. Meanwhile, the increasingly serious 
environmental problems have resulted from urbanization 
have gained a lot of attention. Air pollution events and seri-
ous hazy weather have brought about huge impacts on pub-
lic health and social-economic activities. For instance, ambient 
particulate matter pollution has a close association with hu-
man deaths according to the World Health Organization 

Global Burden of Disease project (WHO, 2012). Recent 
research has shown that a substantial number of diseases 
have a close connection to the severity of air pollution 
(Chen et al., 2016; Liu et al., 2017a; Liu et al., 2016; Qin  
et al., 2017; Yang et al., 2016). Accordingly, the central 
government of China has realized that it is pressing to ad-
dress air pollution problems, especially in densely populated 
urban areas. At the beginning of 2013, China implemented a 
new ambient air quality standard (GB 3095-2012), in which 
PM2.5, ozone and carbon monoxide concentrations were 
included in the monitoring of urban ambient air quality in 
addition to PM10, sulfur dioxide, and nitrogen dioxide (Min-
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istry of Environmental Protection, 2012). Meanwhile, a 
brand-new air quality index (AQI), including six air pollut-
ants (PM10, sulfur dioxide, nitrogen dioxide, carbon mon-
oxide, PM2.5 and ozone) was released. The MEP’s AQI is 
based on Chinese Ambient Air Quality Standards, and is 
measured as the maximum pollution sub-AQI of all pollut-
ants (MEP, 2012), which reflects the air quality of a city.  

Since the release of the new ambient air quality standards, 
a number of papers have concerned urban air quality based 
on different study areas. At a national scale, Chen et al. pro-
vided an evaluation of national air qualities for major cities 
under the new NAAQS-2012 compared to the previous 
NAAQS-1996 and argued that the new standard had brought 
stricter requests for ambient air quality (Chen et al., 2015). 
At the same time, Lin et al. employed spatial effect models 
to explore the social-economic factors of urban air pollution 
based on air quality monitoring data for 161 sample cities in 
2013 and 2014, whose results showed obvious spatial het-
erogeneity in the connections between determinants and air 
quality (Lin and Wang, 2016). At a regional scale, Wang   
et al. analyzed the correlation between air quality and emis-
sion control measures in the Pearl River Delta (Wang et al., 
2016a). Chen analyzed characteristics of PM2.5 at a rural site 
in the Northern China Plain (Chen et al., 2017). Fang et al. 
illustrated significant spatial differentiation and clustering 
pattern of PM2.5 within northern and southern China based 
on observed concentration data from 190 cities in 2014 
(Fang et al., 2016). These studies have analyzed the com-
prehensive air condition in some cities or part of specific 
regions, however, the fundamental distribution patterns of 
different pollutants at a national scale have not been ex-
plored in depth.  

To evaluate urban air quality, it is important to choose an 
appropriate evaluation model, which has been discussed in 
academic literature for many years. The AQI (Air Quality 
Index) commonly used from MEP is calculated according to 
the largest particle concentration among several kinds of 
pollutants. However, this AQI cannot indicate the total air 
pollution status for it does not include a variety of pollutants 
in urban ambient. This method has been criticized because it 
does not reveal the overall situation of urban air pollution. 
Accordingly, adaption and improvement of AQI are worth 
studying. A number of studies in recent years have improved 
the AQI through developing a variety of new air pollution 
indexes and empirical test, such as considering many pol-
lutant concentrations, considering the effect of health, and 
considering various influencing fuzzy factors (Khanna, 
2000; Kyrkilis et al., 2007; WANG et al., 2016b). Wang   
et al. defined a term called the Environmental Quality Index  
(EQI) based on the human feelings of ambient air quality, 
reflecting the real sentiment approaching real conditions 
(Wang et al., 2017b). Kyrkilis et al. followed the idea of 
Swamee and Tyagi (Swamee and Tyagi, 1999) and devel-
oped an aggregate air quality index (AAQI) to estimate air 
pollution exposure. Hu et al. calculated the AAQI and 
health-risk based air quality index (HAQI) based on data 
collected in six megacities of China (Beijing, Shanghai, 

Guangzhou, Shijiazhuang, Xi'an, and Wuhan) during 2013 
to 2014 (Hu et al., 2015). However, these methods have 
their limitations at a different degree, especially when the 
constants and threshold values determine the value of AAQI 
and HAQI, the results of the study will be greatly affected 
(Kyrkilis et al., 2007). Considering that different kinds of 
the composite index have inherent advantages and disad-
vantages, how to develop a new composite index is worth 
further studying for academic literatures.  

Regarding spatial spillover effects, a large number of re-
searchers have focused on the impact of natural factors on 
air pollution, including meteorological condition, climate 
change and air flow (Adams et al., 2005; Lu and Han, 2014; 
Tai et al., 2010; Wang and Liu, 2016). Some research has 
argued that socioeconomic factors have greatly affected air 
quality. For instance, Wang et al. investigated the correla-
tion between road patterns and PM2.5 pollution in Beijing 
and suggested to increase the number of branch and secon-
dary roads to decrease PM2.5 concentrations (Wang et al., 
2017a). Zou et al. focused on the significant role of LUCC 
(urban land use/cover change) on PM10 concentration varia-
tion in the region of Changsha-Zhuzhou-Xiangtan, based on 
the data of simulated PM10 surfaces within this area in 2006 
and 2013 (Zou et al., 2016). Zhou et al. explored the tem-
poral-spatial characteristics of typical PM pollution events 
in 2013 and discussed the risk factors of PM pollution in 
Beijing-Tianjin-Hebei and surrounding areas (Zhou et al., 
2016). These researches paid much attention to factors in-
fluencing air quality at a certain area. Comparatively speak-
ing, the overall situation of different pollutants has not been 
well illustrated and so here we attempted to explore deter-
minants of the main six air pollutants at a national scale. 

We constructed a comprehensive index of urban air qual-
ity (CAQI) to reveal the overall situation of urban air pollu-
tion by combining the six main air pollutants. The CAQI is 
a method that calculates the weight of each air pollutant 
based on the entropy method, which considers all main pol-
lutant concentrations in the AQI. Furthermore, we attempted 
to explore the spatial agglomeration characteristics of urban 
air quality in China and examine the spatial spillover effects 
and important effects of various determinants, both of which 
will significantly contribute to our understanding of spatial 
evolution for urban air quality in China. What’s more, this 
study is expected to provide a scientific reference to carry 
out targeted pollution control measurements. 

2  Materials and methods  

2.1  Sample cities and data sources  

This study selected the country of China as the study area, 
and considering the availability of data, we chose the 113 
key environmental protection cites throughout China as 
sample cities. The 113 cities were put forward from the 11th 
Five-Year Plan, which aimed to construct a national envi-
ronment supervision system and promote air regulation and 
pollution prevention. The spatial distribution of sample cities 
is shown in Fig. 1. These cities distribute in each province 
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Fig.1  Spatial distribution of sample cities 
 
of China, which can depict air quality at a national scale. We 
gathered annual air pollutant concentration data of six pol-
lutants in 113 key environmental protection cites throughout 
China in 2014 and 2015 to explain spatial patterns of urban 
air pollution.  

The MEP’s AQI is based on Chinese Ambient Air Quality 
Standards. In our study, the AQI values of sample cities 
were obtained from the China’s Ministry of Environmental 
Protection (http://datacenter.mep.gov.cn). Air pollutant data 
at the city-level were compiled from the China National 
Environment Monitoring Centre (http://www.cnemc.cn/) and 
referred to China Statistics Yearbook 2015 and 2016, China 
Environmental Statistics Yearbook 2014 and 2015. Data 
related to explain variables in our regression model were 
collected from the Chinese City Statistical Yearbook 2014 
and 2015. Our spatial analysis was conducted in ArcGIS 10 
and Geoda.  

2.2  Entropy weight method 

Urban air quality assessment involved numerous air pollut-
ants. Currently, the AQI is calculated according to concen-
trations of six criteria pollutants (SO2, NO2, CO, O3, PM2.5 
and PM10). The AQI issued by MEP is based on the maxi-
mum partial concentration among six criteria pollutants. It 
does not appropriately reflect the overall condition of urban 
air pollution. In this paper, we use the entropy method to 
determine the weight of each air pollutant in our assessment 
of a comprehensive air quality index (CAQI). The entropy 
method is widely applied in thermodynamics, economic and 
information from research by Shannon in 1948 (Shannon, 
1948). Currently, it is widely used in engineering, econom-
ics and finance (Liu et al., 2005; Ni et al., 2009; Wen-Jie 
and Shi-Guo, 2008; Zhao et al., 2004). The entropy method 
is used to determine the weight and can provide more useful 
information (Rubinstein and Kroese, 2008). We supposed 

there are m pollutants and n cities in this study; steps of the 
entropy method are as follows: 

We noticed that each pollutant was observed at different 
measurement units. In order to keep all data the same di-
mension and easier to compare we used the following equa-
tion: 
 ( min ) / ( max min )ij ij i i iz y y y y    (1) 

where, zij refers to the standardized value; yij refers to the 
original value of the annual concentration of ith air pollutant 
of the jth city; min iy refers to the minimum value of the 

data; and max iy refers to the maximum of the data. 

The entropy of the ith pollutant is defined as: 
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Accordingly, i iw z  denotes the score of ith air pollutant 

of the jth city, the greater the score of ith air pollutant, the 
larger contribution to the comprehensive air pollution in the 
jth city. 

To the jth city, its CAQI can be computed as follows: 
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2.3  Kenal density estimation 

The Kernel density estimation (KDE) calculates the density 
of features in a neighborhood around those features (Dehnad, 
1987). Some researchers have used this method to analyze 
and detect spatial hotspots of an area (Chu et al., 2012; Xie 
and Yan, 2008). In order to generate a smooth density sur-
face of air pollution concentration, we use KDE to compute 
pollution density compared with the estimated values. In our 
research, we adopt KDE to estimate hotspots of each indi-
vidual pollutant within 113 cities. The general form of a 
KDE is given as follows (Zhang et al., 2013): 
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where, k(s) is the estimated density at city s; s=1,, 113; r 
is the search radius (scope) of the KDE; n is the number of 
sampling cities; dls is the distance between city l and city s; 
and φ is the weight function and is usually modeled as a 
kernel function of the ratio between dls and r. In this study, 
we used a kernel with a Gaussian function, and the formula 
is as follows: 
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2.4  Factors selected affect urban air pollution 

By referencing existing literature, we collected eight indicators 
related to natural and socioeconomic activities (Table 1). 

Geographic position determines a region’s natural condi-
tion, longitude (X1) and latitude (X2) are chosen to repre-
sent the geographical differences of meteorological condi-
tion among cities. Urbanization is along with the spread of 
urban build-up areas, growth of urban population, develop-
ment of transportation and changes in lifestyle (Gu et al., 
2012). Research has demonstrated there is some nexus be-
tween urbanization and air pollutant (Liu et al., 2017b). 
Therefore, urban population density (X3) and urban built-up 
area (X4) are selected to describe urbanization variables. 
Considering industrial emissions contribute significantly to 
air pollution (Place and Mitloehner, 2010), we chose indus-

trial SO2 emissions (X5) and industrial dust emissions (X6) 
when measuring industrial emission variables. Clean energy 
utilization may have a positive effect on air quality, thus the 
usage amount of Liquefied Petroleum Gas (X7) is selected. 
Electricity consumption per GDP (X8) is a comprehensive 
index reflecting a city’s carbon intensive economy. The 
variable of LPG (X7) is expected to have a negative effect 
on the value of AQI, and other indexes should be positive.  

2.5  The regression model 

2.5.1  General regression model 

To further understand spatial variation in urban air quality 
across China, the following model (model 1) was con-
structed to test the relationship between urban air pollutions 
and various factors: 
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i Xy a a a a X

a X
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a X 
    
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where, the explained variable y is the air pollutant concen-
tration of sampled cities; i represents CAQI or six different 
pollutants of sampled cities, and they are entered into the 

model separately; X1, , X8 are the explanatory variables 

listed in Table 1 for observation cities; a [a0, a1, , a8] are 
the parameter vectors to be estimated and they reflect the 
influence of the explanation variables on pollutant concen-
tration among cites; and  is random disturbance. Consider-
ing the influence of heteroscedasticity, we compute the nat-
ural logarithm of y and X3, X4, X5, X6, X7 and X8. 

2.5.2  Spatial effect models 

Given the spatial diffusion effect of air pollution, we argue 
that air quality of an individual city is partially explained by 
the air pollutant concentration in nearby or neighboring ob-
servations. To test this spillover effect, models including 
spatial effect should be constructed (Anselin and Griffith, 
1988). A spatial lag model (SLM) is a spatial effect model 
that reflects the influence of spatial area on other adjacent 
areas in the region. The SLM (model 2) can be defined as 
follows: 
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(8)

 
Table 1  Explanatory variables for regional variation in AQI across China 

Category Indicator Variable Expected Sign 

Meteorological condition Longitude X1 + 

 Latitude X2 + 

Urbanization Urban population density X3 + 

 Urban built-up area X4 + 

Industrial emission Industrial SO2 emission X5 + 

 Industrial dust emission X6 + 

Clean energy utilization LPG (Liquefied Petroleum Gas) X7  

Carbon intensive economy Electricity consumption per GDP X8 + 
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where, yi, a and X have the same meaning as model 1;  is a 
spatial autocorrelation parameter to be estimated and when 
the coefficient of  is highly significant, the neighborhood 
spillover effects will be captured. W is a nn spatial weight 
matrix (where n is the number of research cities), where wjk 
is the spatial weight that links jth and kth cities (with w11 = 
0). Typically, the definition of neighbors used in the weights 
matrix is according to distance decay and contiguity effect; 
 assumed to be a vector of independent and identically dis-
tributed (i.i.d) error terms.  

Another model to test the spatial dependence is the spa-
tial error model (SEM), including a spatial autoregressive 
error term. The SEM model (model 3) is written as: 

 0 1 2 3

4 8

ln 1 2 ln 3

ln 4 ln 8
i Xy a a a a X

a X

X

a X 
    

  
 

(9)
 

 in which W       (10) 

where, yi, a and x have the same meaning as model 1; W is 
the spatial weights matrix;  is a vector of spatially auto-corr-
elated error terms;  is a vector of i.i.d errors; and  is the 
spatial autoregressive coefficient to be estimated. If  is 
highly significant, it means that pollutant concentration at a 
certain city is affected by local characteristics and the omit-
ted variables at neighboring cities.  

3  Results and analysis 

3.1  Overall urban air pollution  

Compared with 2014, the annual average concentration of 
different pollutants in 2015 showed varying degrees of de-
cline (Table 2). Concentrations of PM10, PM2.5 and SO2 had 
larger magnitudes of decline. The average concentration of 
PM10 decreased from 108.25 to 95.77 and has the biggest 
change. However, the average concentration of O3 increased 
from 135.37–142.73, which has a high amount of increase 

(7.36). Comparatively, average concentrations of NO2 and 
CO have lesser decrease. The main air pollutants of key cities 
are SO2, PM10 and PM2.5, which have a higher concentration.  

From the perspective of the entropy weight of each 
component pollutant, CO and SO2 contributed a lot to urban 
air pollution in Chinese cities (Table 3). The total weight of 
these two pollutants was 0.4873 in 2014 and 0.503 in 2015, 
reflecting that industrial production has a profound contri-
bution on air pollution. In addition, although O3 has a higher 
concentration among the six air pollutants, it has an insig-
nificant influence on air pollution. 

3.2  Spatial characteristics of urban air pollution 

Fig. 2 illustrates geographical variation of comprehensive 
air quality. The overall spatial distribution map shows that 
air quality becomes better in cities of southern China from 
2014 to 2015. The change in air quality in cities in Northern 
China is not significant. However, the distribution of CAQI 
in the two years shows that there are obvious regional diff-
erences of urban air pollution among Chinese cities. Na-
tionally, urban air pollution shows significant North-South 
differentiation and East-West variation. A dividing line can 
be drawn along 33N, air pollution in cities located in re-
gions north of that line was more serious than in southern 
areas. Cities with the worst air quality are mainly conc-
entrated in north and central regions of China, including: (i) 
the Beijing-Tianjin-Hebei metropolitan areas, (ii) urban ag-
glomeration areas on the Shandong peninsula, (iii) urban 
agglomeration areas in central Henan, (iv) Shenyang met-
ropolitan areas in Liaoning; and (v) Taiyuan metropolitan 
areas in Shanxi. 

In order to explore different influences of each pollutants, 
we drew KDE maps with annual average values of different 
individual pollutants. Fig. 3 shows that urban air pollution  

 

Table 2  Descriptive statistics of six air pollutants of key cities in China 

Pollutant Unite Year Min Max Mean Std. dev. Observations 

SO2 μg m-3 2014 6 123 36.7434 20.3780 113 

  2015 5 87 29.2124 16.6639 113 

NO2 μg m-3 2014 14 67 39.2035 10.6429 113 

  2015 14 63 37.0442 10.4603 113 

PM10 μg m-3 2014 42 224 108.2478 33.5965 113 

  2015 40 174 95.7699 30.5424 113 

CO μg m-3 2014 0.9 5.4 2.2858 0.9363 113 

  2015 0.9 5.8 2.1708 0.9304 113 

O3 μg m-3 2014 69 209 135.3717 28.2663 113 

  2015 72 203 142.7345 24.2196 113 

PM2.5 μg m-3 2014 23 129 63.9292 19.5493 113 

  2015 22 107 56.3982 17.5705 113 

 
Table 3  Entropy weight of each air pollutant in 2014 and 2015 

Pollutant CO SO2 PM10 PM2.5 NO2 O3 

2015 0.2725 0.2305 0.1647 0.1451 0.1212 0.0660 

2014 0.2598 0.2275 0.1461 0.1331 0.1172 0.1156 
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Fig.2  The comprehensive air quality index of sample cities by Entropy-based assessment  

 

 
 

Fig.3  KDE hotspot maps of individual air pollutants in 113 cities of China in 2015 
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of key cities in China, in general, has evident agglomeration 
characteristics, but spatial hotspots varied among different 
individual pollutions. 

Hotspots for SO2 clustered in the middle of the Shandong 
peninsula, the central region of Henan, and north of Ningxia. 
The Yangtze River Delta and Shenyang metropolitan areas 
in Liaoning have slight agglomeration. These regions pos-
sess a higher level of industrialization and produced a lot of 
industrial air pollution. Hotspots for CO clustered in the 
south of Hebei, north of Henan, and Tianjin. These regions 
cluster a multitude of people, and the distribution of the 
population is correlated with transport dust, gas pollution 
and life pollution emissions. 

The spatial hotspot distribution of NO2 and O3 is similar, 
the Yangtze River Delta is the most obvious clustered region 
and the middle of the Shandong peninsula has slight ag-
glomeration. The hotspots for PM10 and PM2.5 have similar 
distributions, whereby the Yangtze River Delta, the middle 
of Shandong peninsula and the north of Henan are main 
cluster regions. These regions have obvious clustered char-
acteristics of combined pollutants, where air pollution is 
affected by multifarious factors. Nationally, hotspots for 
pollutants are located in Northern China and urban agglom-
eration areas in the Yangtze River Delta. Most of southern 
China has good air quality.  

From a regional perspective, combined pollutants and 
secondary pollutants are clustered in development areas, 
while industrial pollutants are clustered more obviously in 
industrial cities. NO2, O3 and PM2.5 are the most obviously 
clustered pollutants in the Yangtze River Delta. As this re-
gion has a high level of economic development, the multi-
tudinous air pollution sources lead to an obvious agglom-
eration of combined pollutants. CO, PM2.5 and PM10 are the 
most obviously clustered pollutants in Beijing-Tianjin- He-
bei metropolitan areas and central Henan. Particulate matter 
is the main pollutant in this region which illustrates the fact 
that serious haze weather has occurred many times in 
Northern China. SO2, PM10 and PM2.5 are the most obvi-
ously clustered pollutants in the urban agglomeration areas 
on the Shandong peninsula. SO2 is the most obviously clus-
tered pollutant in the Shenyang metropolitan areas in Liao-
ning. As Shenyang is an important industrial city in China, 
the industrial air pollutant SO2 is the main air pollution 
source. SO2 and CO are the most obviously clustered 
pollutants in the Taiyuan metropolitan areas in Shanxi be-
cause Shanxi is the leading coal producing province in 
China. Rapid mineral exploration and industrial production 
lead to heavy air pollution. SO2 is the most obviously clus-
tered pollutant in the Yinchuan metropolitan areas in 
Ningxia because this region has abundant mineral resources 
which facilitate the development of industry. 

3.3  Factors influencing urban air pollution 

In our study, maximum likelihood (ML) techniques were 
utilized to estimate both a SEM and a SLM. The designed 

models were run in GeoDa. Table 4 presents the estimated 
results of the explanatory factors of CAQI. The results show 
that R2 of OLS, SEM and SLM is 0.569, 0.652, and 0.658, 
respectively, which means the SLM is better than the clas-
sical multiple linear regression model and SEM. The SLM 
has the least loglikelihood (–15.820), compared with OLS 
(–26.088) and SEM (–18.001). At the same time, the AIC 
(Akaike information criterion) and SC (Schwarz criterion) 
of this model are lower than the other models. This con-
firmed that the SLM is a proper alternative model and a 
region’s air quality is influenced by nearby or neighboring 
air quality. The ρ value of SLM is 0.573 (much larger than 
zero), which shows a significant neighborhood spillover effect. 

The regression model shows that the combination of me-
teorological factors and human-related determinants greatly 
influence urban air quality variation in China. The three 
models almost have the same results, that is, latitude, urban 
population density and industrial dust emission have a sig-
nificant positive influence on CAQI, while Liquefied Petro-
leum Gas utilization has a significant negative impact on 
CAQI. Thereinto, latitude has a significance level of 0.01 in 
the three models, which shows obvious latitudinal variation 
of air pollution. In other words, air quality of southern 
China is preferable to that of Northern China. The urban 
population density reflects cities’ population aggregation. 
Additionally, the distribution of the population is correlated 
with transport dust, gas pollution and life pollution emis-
sions which apparently affect the amount of emissions and 
the efficiency of diffusion of air pollutants. As industrial 
emissions are the direct source of air pollution, apparently, 
industry indicators have significant negative effects on air 
quality. The industrial dust emission has a significance level 
of 0.1 in SEM and SLM, and at the same time, the coeffi-
cient of the industrial dust emission is much higher com-
pared with other variables, which confirmed the obvious 
negative effect of industrial air pollution. In line with ex-
pectation, Liquefied Petroleum Gas utilization has a nega-
tive correlation with the value of CAQI. The Liquefied Pe-
troleum Gas utilization has a significance level of 0.05 in 
OLS and 0.1 in SLM. It shows that clean energy utilization 
has substantially improved urban air quality.  

Tables 5–7 present the estimated coefficients of the ex-
planatory variables of individual air pollutants according to 
OLS, SEM and SLM, respectively. 

The estimation results of the SLM and SEM have con-
firmed obvious spatial spillover effects of air pollutions 
among cities in China. The R squared for the six pollutants 
in the SLM are all higher than in the other models, indicat-
ing that this model is better than the classical multiple linear 
regression models and SEM. Furthermore, the ρ value of 
SO2, NO2, PM10, CO, O3 and PM2.5 produced by the SLM is 
0.483, 0.26, 0.623, 0.401, 0.275 and 0.688, respectively. 
These results are in line with model assumptions, reflecting 
significant neighborhood spillover effects of air pollution. 
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Table 4  Estimation results of influencing factors of CAQI in China in 2014 

OLS SEM SLM 
Variable 

Coefficient T-value Coefficient Z-value Coefficient Z-value 

CONSTANT 1.094* 1.85 1.444* 1.66 0.251 0.48 

X1 –0.007 –1.46 –0.008 –1.05 –0.007 –1.54 

X2 0.034*** 5.48 0.035*** 3.69 0.015** 2.32 

X3 0.111** 2.31 0.059 1.29 0.074* 1.77 

X4 0.072 1.21 0.05 0.96 0.048 0.94 

X5 0.047 1.01 0.031 0.78 0.029 0.73 

X6 0.052 1.17 0.068* 1.92 0.072* 1.90 

X7 –0.067** –2.27 –0.037 –1.43 –0.043* –1.68 

X8 0.127** 2.03 0.092 1.58 0.089 1.64 

λ(W) — — 0.561*** 5.47 0.484*** 5.05 

R2 0.569  0.652  0.658  
Adj.R2 0.536  —  —  

Loglikelihood –26.088  –18.001  –15.820  
AIC 70.175  54.001  51.639  
SC 94.722  78.548  78.913  

Note: *, **, ***represent significance levels of 0.10, 0.05, and 0.01 respectively. Similarly hereinafter. 
 

Table 5  Estimation results of the influencing factors of air pollutants by OLS  

SO2 NO2 PM10 CO O3 PM2.5 
OLS 

Coefficient T-value Coefficient T-value Coefficient T-value Coefficient T-value Coefficient T-value Coefficient T-value

Constant –0.153 –0.22 1.487*** 3.59 3.607*** 9.02 0.56 0.53 3.331*** 8.62 2.696*** 5.96 

X1 0.006 0.97 –0.003 –0.79 –0.007** –2.03 –0.02*** 0.00 0.008** 2.35 –0.001 –0.22 

X2 0.037*** 4.89 0.016*** 3.62 0.026*** 6.27 0.031*** 0.01 –0.003 –0.72 0.017*** 3.62 

X3 0.071 1.24 0.091*** 2.71 0.114*** 3.51 0.12*** 0.04 –0.035 –1.11 0.163*** 4.42 

X4 –0.019 –0.27 0.175*** 4.21 0.071* 1.78 –0.12** 0.05 0.098** 2.54 0.081* 1.79 

X5 0.087 1.57 0.003 0.10 0.008 0.26 –0.007 0.04 0.048 1.59 –0.017 –0.48 

X6 0.039 0.73 0.033 1.07 0.031 1.02 0.059 0.04 –0.032 –1.09 0.044 1.29 

X7 –0.091** –2.55 –0.026 –1.25 –0.072*** –3.57 0.011 0.03 –0.015 –0.79 –0.076*** –3.35 

X8 0.204*** 2.73 0.067 1.54 0.017 0.40 0.132** 0.06 0.112*** 2.74 –0.028 –0.58 

R2 0.598  0.511  0.588  0.487  0.187  0.491  
Adj.R2 0.567  0.473  0.556  0.448  0.124  0.452  

  
Table 6  Estimation results of the influencing factors of air pollutants by SEM  

SO2 NO2 PM10 CO O3 PM2.5 
LMError 

Coefficient Z-value Coefficient Z-value Coefficient Z-value Coefficient Z-value Coefficient Z-value Coefficient Z-value

CONSTANT –0.13 –0.13 1.514*** 3.20 3.472*** 4.99 0.806 1.16 3.473*** 7.92 2.65*** 3.11 

X1 0.006 0.69 –0.003 –0.67 –0.004 –0.64 –0.018*** –3.12 0.007* 1.94 –0.001 –0.11 

X2 0.035*** 3.26 0.016*** 3.18 0.02*** 2.58 0.03*** 4.03 –0.003 –0.61 0.018* 1.90 

X3 0.061 1.09 0.083** 2.50 0.075*** 2.66 0.077* 1.82 –0.036 –1.16 0.101*** 3.46 

X4 –0.028 –0.44 0.16*** 4.04 0.048 1.53 –0.085* –1.74 0.092** 2.49 0.049 1.52 

X5 0.054 1.13 –0.001 –0.05 0.004 0.17 –0.022 –0.60 0.047* 1.66 –0.018 –0.75 

X6 0.060 1.38 0.038 1.34 0.028 1.34 0.072** 2.11 –0.031 –1.19 0.044** 2.03 

X7 –0.056* –1.79 –0.015 –0.74 –0.031* –1.94 0.002 0.07 –0.015 –0.84 –0.024 –1.51 

X8 0.181** 2.56 0.064 1.48 0.026 0.72 0.093* 1.72 0.103** 2.57 –0.005 –0.14 

λ 0.529*** 4.96 0.27** 2.01 0.709*** 8.87 0.441*** 3.75 0.259* 1.92 0.783*** 11.79 

R2 0.663  0.531  0.727  0.549  0.220  0.723  
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Table 7  Estimation results of the influencing factors of air pollutants by SLM  

SO2 NO2 PM10 CO O3 PM2.5 
LMLag 

Coefficient Z-value Coefficient Z-value Coefficient Z-value Coefficient Z-value Coefficient Z-value Coefficient Z-value

CONSTANT –0.628 –1.03 0.953** 2.12 1.162*** 2.82 0.22 0.46 2.341*** 3.75 0.731** 1.99 

X1 0.004 0.85 –0.005 –1.37 –0.004* –1.76 –0.013*** –3.10 0.005* 1.75 –0.004 –1.63 

X2 0.013* 1.71 0.011** 2.56 0.008** 2.12 0.018*** 3.02 –0.003 –0.78 0.005 1.51 

X3 0.043 0.85 0.087*** 2.77 0.079*** 3.12 0.082** 2.08 –0.034 –1.14 0.11*** 4.18 

X4 –0.043 –0.70 0.16*** 4.11 0.051* 1.66 –0.101** –2.12 0.091** 2.52 0.053* 1.67 

X5 0.065 1.37 –0.004 –0.12 0.001 0.06 –0.019 –0.52 0.045 1.57 –0.022 –0.89 

X6 0.058 1.27 0.042 1.44 0.036 1.59 0.073** 2.04 –0.03 –1.11 0.053** 2.23 

X7 –0.065** –2.11 –0.016 –0.83 –0.041*** –2.63 0.008 0.35 –0.016 –0.88 –0.034** –2.11 

X8 0.166** 2.56 0.053 1.28 0.009 0.29 0.104** 2.06 0.099** 2.58 –0.031 –0.92 

W 0.483*** 5.17 0.26** 2.26 0.623*** 7.89 0.401*** 3.73 0.275** 2.12 0.688*** 9.73 

R2 0.679  0.539  0.741  0.558  0.228  0.726  

 
From the perspective of each component pollutant, the 

variables latitude and electricity consumption per GDP have 
a significant positive correlation with the concentration of 
SO2, while LPG has a significant negative correlation with 
the concentration of SO2. This shows that clean energy 
utilization and a carbon intensive economy have different 
effects on urban air pollution concentrations of SO2. Elec-
tricity consumption has a close connection with industrial 
production, which affects the concentration of SO2. As for 
NO2, latitude, urban population density, and urban built-up 
area have significant positive correlations with NO2, re-
flecting that urbanization is a key determinant of the con-
centration of NO2. Regarding PM10, urbanization and mete-
orological conditions have significant positive correlations, 
while LPG has a significant negative correlation with con-
centration. Urbanization and industrial emissions are prin-
cipal determinants of PM2.5, thereinto urban population 
density is the most significant variable. Meteorological con-
ditions, urbanization, industrial emissions and carbon inten-
sive economy are significantly positively correlated with CO. 

4  Conclusions and discussion 

Compared with 2014, the annual average concentration of 
different pollutants in 2015 had varying degrees of decline. 
The distribution of CAQI shows that there are obvious re-
gional differences in urban air pollution among Chinese 
cities. Nationally, cities with the worst air quality were 
mainly located in the northern and central provinces of 
China, dominantly in Beijing-Tianjin-Hebei metropolitan 
areas. In general, CO and SO2 were the two principal pol-
lutants in most Chinese cities, but this varied greatly among 
cities. The spatial hotspots of air pollutants are mainly lo-
cated in the Beijing-Tianjin-Hebei metropolitan areas, urban 
agglomeration areas on the Shandong peninsula, urban ag-
glomeration areas in central Henan, Shenyang metropolitan 
areas in Liaoning, and Taiyuan metropolitan areas in Shanxi. 
The regression model showed that industrialization and ur-

banization factors greatly influenced urban air quality varia-
tion in China. The results from the spatial lag regression 
model confirmed that air pollution has obvious spatial 
spillover effects among key cities in China. Therein, the 
high correlation between industrial emission and CAQI 
shows that industrial emissions are a vital direct source of 
air pollution. Thus, reducing industrial pollution and streng-
thening environmental supervision is critical to improving 
urban air quality. Urbanization has produced much influence 
on urban air quality because the increasing population has 
produced more transport dust, gas pollution, and life pollu-
tion emissions. This should remind governments to carry out 
reasonable urban planning to control the size and optimize 
population distribution. The Liquefied Petroleum Gas usage 
and electricity consumption have completely opposite in-
fluences on air quality. The results reflect clean energy uti-
lization has the potential to improve urban air conditions, 
while carbon intensive economy will take much pressure on 
urban air regulation. Accordingly, government should ad-
vocate for the public to have a green life and guide the use 
of clean energy.  

The spatial interdependence effects of urban air quality 
suggest that Chinese municipal governments should 
strengthen regional cooperation and deepen bilateral col-
laboration in terms of air regulation and pollution preven-
tion. The KDE results indicate that cities with severe air 
quality have obvious agglomeration. It is necessary to con-
struct regional cooperation in environmental governance. As 
each region has different development policies and re-
sources, their air quality and main air pollutants differ 
greatly. Thus, different regions should take different man-
agement approaches to control air pollution based on their 
own air conditions and air pollution sources. Technological 
innovation in clean energy should be promoted and would 
be expected to reduce emissions of pollutants from related 
sources.  
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中国城市空气污染及其空间溢出效应评估——以 113个环保重点城市为例 

龚则周，张晓平 

中国科学院大学资源与环境学院，北京 100049 

摘  要：近年来，中国城市空气污染问题日益受到学界和民众的广泛关注。对城市空气质量进行科学评价并分析其相关影

响因素，对于空气污染治理具有重要的理论和实践意义。中国自 2013 年初实施新的空气质量标准（GB 3095-2012），PM2.5，O3，

CO，PM10，SO2，NO2等六种污染物被列入监测指标，并由环保部信息发布平台公布污染物浓度数据。本文收集了中国 113 个环

保重点城市 2014、2015 年六种污染物浓度数据，基于核密度分析法、空间热点分析法来刻画中国城市空气污染演变格局和集聚

形势。通过熵值评价系统，构建了综合空气质量（CAQI）指标，并解析六种污染物对中国城市空气质量的综合影响。研究结果

表明，大体上，CO 和 SO2 是中国大部分城市空气的主要污染物，但在不同类型城市表现出明显差异。空气质量较差的城市主

要位于华北和华中地区，其中京津冀地区尤为严重。利用一般回归模型、空间滞后和空间误差回归模型探究影响城市空气质量的

主要影响因素。结果表明气象条件和人类活动对城市空气质量影响显著，具体表现为工业化和城镇化因子与城市空气综合质量具

有较高的相关性。空间滞后模型结果显示城市空气污染存在明显的空间溢出效应，表明临近城市之间的空气质量相互影响程度较

高。因此，本研究建议政府和相关组织应加强区域联防联控和深度合作，共同治理城市空气污染问题。 
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